GUJARAT TECHNOLOGICAL UNIVERSITY

DIPLOMA ENGINEERING - SEMESTER- 1(new) EXAMINATION - Winter- 2019

Subject Code: 3300001 Date: 01-01-2020

Subject Name: Basic Mathematics

Time: 2:30 AM TO 05:00 PM **Total Marks: 70**

Instructions:

1. Attempt all questions.

- 2. Make Suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 4. Use of programmable & Communication aids are strictly prohibited.
- 5. Use of only simple calculator is permitted in Mathematics.
- 6. English version is authentic.

Fill in the blanks using appropriate choice from the given options. Q.1

14

$$\log_{\sqrt{5}}(\sqrt[3]{25}) = \underline{\qquad \qquad b.\frac{4}{3}}$$

c. 3

૧
$$\log_{\sqrt{5}}(\sqrt[3]{25}) =$$
_________ બા. $\frac{4}{3}$

5. 3

5. 4

$$2 \frac{1}{\log_{\alpha}\left(\frac{1}{\alpha}\right)} = \underline{\hspace{1cm}}$$

c. -1

 $d.2\alpha$

$$\frac{1}{\log_{\alpha}\left(\frac{1}{\alpha}\right)} = \underline{\hspace{1cm}}$$

5. −1

S. 2α

c. log₁₀ 5

d. -3

a. 3 b.
$$\log_5 10$$
 c. $\log_{10} 5$
3 $\log_{10} 500 - 2 = \frac{1}{\omega_1}$
4. 3 4. $\log_5 10$ 5. $\log_{10} 5$

d. -9

જો
$$\begin{vmatrix} a & 1 & -2 \\ 4 & 4 & 2 \\ 1 & 3 & 1 \end{vmatrix} = 0$$
 હોય તો $a =$ _____

6 If A is any square matrix then $A - A^{T}$ is _____ matrix

a. diagonal b. column c. symmetric d. skew symmetric

૬ જો \mathbf{A} કોઇપણ યોરસ શ્રેણિક હોય તો $\mathbf{A} - \mathbf{A}^T$ _____શ્રેણિક **છે**.

અ. વિકર્ણી **બ**. સ્તંભ **ક**. સંમિત **ડ**. વિસંમિત

```
7

If A = \begin{bmatrix} -3 & 5 & 4 \\ 0 & 4 & 7 \\ -2 & -5 & 9 \end{bmatrix} then A(adjA) = ______(where I is 3 \times 3 unit matrix)

a. 251I

b. -251 I

c. 283I

d. -283 I

8

No A = \begin{bmatrix} -3 & 5 & 4 \\ 0 & 4 & 7 \\ -2 & -5 & 9 \end{bmatrix} હોય તો A(adjA) = _______(જ્યાં / એ 3 \times 3 એકમ શ્રેણિક છે.)

આ 251I

w. 251I

s. 283I

S. -283 I
          8 \frac{6\pi}{5} = \underline{\qquad} degree
                                               b. 72
         \zeta = \frac{6\pi}{5} = ____ અંશ
અ. 36
                ખ. 36 બ. 72 ક. 144

The principal period of 4\sin\frac{\theta}{2}\cos\frac{\theta}{2} is _____
a. \pi b. 2\pi c. 0
                                                                                                            5. 216
               4sin\frac{\theta}{2}cos\frac{\theta}{2} નું મુખ્ય આર્વતમાન = _____
અ. \pi બ. . 2\pi ક. 0
         10 If tan\theta = -\frac{1}{2} and cos\theta = \frac{1}{\sqrt{3}} then \theta lies in ____quadrant.
        a. first b. second c. દાતા હ જો tan\theta = -\frac{1}{2} અને cos\theta = \frac{1}{\sqrt{3}} હોય તો \theta _______ યરણમાં છે અ. પ્રથમ બ. દ્વિતીય ક. તૃતીય S. યતુંથ
                                                                                                            d. fourth
         11 sin^{-1}\left(\frac{2x}{1+x^2}\right) = \frac{1}{b \cdot 2cos^{-1}x} c. 2tan^{-1}x d. none of these

12 sin^{-1}\left(\frac{2x}{1+x^2}\right) = \frac{1}{b \cdot 2cos^{-1}x} c. 2tan^{-1}x d. none of these
                                             બ. 2cos<sup>-1</sup>x 5. 2tan<sup>-1</sup>x 5. આમાંથી એકપણ નહિ
          12 If the diameter of a circle is 28 cm, then area of circle is ____sq.cm.
                                                                                             d. 49
                  a. 14 b. 28 c. 616
         ૧૨ જો વર્તુળ નો વ્યાસ 28 cm હોય તો તે વર્તુળનું ક્ષેત્રફળ____ યો.સેમી. છે.
                                                                            5. 616
                                               બ. 28
          13 The volume of cylinder whose radius and height are r and h resp. is _____
                                                                                                             d.2\pi rh
                                               b. \pi r^2 h c. 2\pi r^2 h
         ૧૩ r ત્રિજ્યા અને h ઊંચાઇવાળા નળાકારનું ધનફળ ____થ અ. r^2h અ. \pi r^2h ક. 2\pi r^2h
                                                                                                     થાય.
                                                                                                             5.2\pi rh
          14 The surface area of a sphere whose diameter 28 cm is
                                                b. 196π c. 2464
                                                                                                             d. 392\pi
                28 cm વ્યાસ વાળા ગોલકનું પૃષ્ટફળ _____
          98
                                                                                                             5. 392\pi
Q.2 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.
                                                                                                                                 06
                Prove that : 7 \log \left( \frac{16}{15} \right) + 5 \log \left( \frac{25}{24} \right) - 3 \log \left( \frac{80}{81} \right) = \log 2
           9. \text{Hi}[\text{Und 52}]: 7\log\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right) - 3\log\left(\frac{80}{81}\right) = \log 2
           2. Solve: \frac{logx}{log4} = \frac{log64}{log256}
2. Geq eliti: \frac{logx}{log4} = \frac{log64}{log256}
```

- Find the area of a trapezoid with bases of 10 cms. and 14 cms. and height of 5 cms.
- 5 સેમી. ઉંચાઇ વાળા અને 10 cms. તથા 14 cms પાયાની લંબાઇવાળા સમલંબ યતષ્કોણ નું ક્ષેત્રફળ શોધો.
- A hemispherical tank has the diameter 4.2 meter, then find the capacity of the tank in liter.
- એક અર્ધગોળાકાર ટાંકીનો અંદરનો વ્યાસ 4.2 meter છે. તો ટાંકીની ક્ષમતા લીટર માં શોધો.
- (b) Attempt any two કોઇપણ બે ના જવાબ આપો.

- If $a^x = b^y = c^z$ then prove that $\log_a(bc) = x\left(y^{-1} + \frac{1}{z}\right)$ where $x, y, z \neq 0$
- 9. જો $a^x = b^y = c^z$ હોય તો સાબિત કરો કે $\log_a(bc) = x\left(y^{-1} + \frac{1}{z}\right)$ જ્યાં $x, y, z \neq 0$
- 2. Solve : $x^{\log_4 x} = 16x$
- ઉદ્દેલ શોધો : $x^{\log_4 x} = 16x$
- The total surface area of a cylinder is 1386 cm². If the curved surface area of this cylindre is 9th part of its total surface area then find radius and height of the cylindre
- 3. એક ધન નળાકાર નું કુલ પૃષ્ટફળ 1386 cm^2 છે. તેની વક સપાટી નું ક્ષેત્રફળ તેના કુલ પૃષ્ટફળના એક નવમાંશ જેટલું હોય તો તે નળાકાર ની ત્રિજ્યા અને ઊંચાઇ શોધો.
- The diameter of a circle is 1 meter . If the angle between two radii is 36^{0} , then find the length of the arc cut off by them (π = 3.142)
- એક વર્તુળનો વ્યાસ 1 મીટર છે. જો બે ત્રીજ્યાઓ વચ્ચેનો ખૂણો 360 હોય તો તેમના દ્વારા કપાયેલ યાપની લંબાઇ શોધો . ($\pi = 3.142$)
- (a) Attempt any two કોઇપણ બે ના જવાબ અ Q.3

- 1. For what values of α , the matrix $A = \begin{bmatrix} 3 \alpha & 0 & 0 \\ 0 & 4 \alpha & \sqrt{3} \\ 0 & \sqrt{3} & 6 \alpha \end{bmatrix}$ is singular?

 9. α ની કઈ કિંમતો માટે શ્રેણિક $A = \begin{bmatrix} 3 \alpha & 0 & 0 \\ 0 & 4 \alpha & \sqrt{3} \\ 0 & \sqrt{3} & 6 \alpha \end{bmatrix}$ અસામાન્ય શ્રેણિક થશે?

 2. If $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ and $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ then verify(AB)C = A(BC).

- ર. જો $A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix}$ અને $C = \begin{bmatrix} -3 & 1 \\ 2 & 0 \end{bmatrix}$ હોય તો (AB)C = A(BC) ચકાસો .

 3. If $A = \begin{bmatrix} 0 & -tan\frac{\alpha}{2} \\ tan\frac{\alpha}{2} & 0 \end{bmatrix}$ then show that $I + A = (I A)\begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}$
- 3. જો $A = \begin{bmatrix} 0 & -tan\frac{\alpha}{2} \\ tan\frac{\alpha}{2} & 0 \end{bmatrix}$ હોય તો દર્શાવો કે $I + A = (I A)\begin{bmatrix} cos\alpha & -sin\alpha \\ sin\alpha & cos\alpha \end{bmatrix}$
- 4. If $3A 2B = \begin{bmatrix} 2 & 1 \\ -2 & -3 \end{bmatrix}$ and $B 4A = \begin{bmatrix} -1 & 2 \\ -4 & 4 \end{bmatrix}$ then find A and B
- ૪. જો $3A-2B=\begin{bmatrix}2&1\\-2&-3\end{bmatrix}$ અને $B-4A=\begin{bmatrix}-1&2\\-4&4\end{bmatrix}$ હોય તો A અને B શોધો.

If
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$
 then prove that $A^3 - 4A^2 - 3A + 11I = 0$.

Where I is unit matrix of order 3.

જા
$$A = \begin{bmatrix} 1 & 3 & 2 \\ 2 & 0 & -1 \\ 1 & 2 & 3 \end{bmatrix}$$
 હોય તો સાબિત કરો કે $A^3 - 4A^2 - 3A + 11I = 0$.
જ્યાં I એ 3 કક્ષાનો એકમ શ્રેણિક છે.

સાબિત કરો કે કોઈપણ યોરસ શ્રેણિક ને સંમિત અને વિસંમિત શ્રેણિકોના સરવાળા તરીકે દર્શાવી શકાય

08

3. Find the matri X such that
$$\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$$

3. Find the matri
$$X$$
 such that $\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$
3. એવો શ્રેણિક X શોધો કે જેથી $\begin{bmatrix} 5 & -7 \\ -2 & 3 \end{bmatrix} X = \begin{bmatrix} -16 & -6 \\ 7 & 2 \end{bmatrix}$ થાય

4. solve by matrix method:
$$2x + 3y = 1$$
 and $y - 4x = 2$

4. solve by matrix method:
$$2x + 3y = 1$$
 and $y - 4x = 2$
8. શ્રેણિકની મદદ શી ઉકેલ શોધો : $2x + 3y = 1$ and $y - 4x = 2$

1. Attempt any two stores of a series of the standard stan
$$A + B = \frac{3}{2} tan A$$
.

૧. જો
$$sin(2A+B) = 5sinB$$
 હોય તો દર્શાવો કે $tan(A+B) = \frac{3}{2}tanA$.

2. If
$$x = \tan\theta + \sin\theta$$
 and $y = \tan\theta - \sin\theta$ then Prove that $x^2 - y^2 = 4\sqrt{xy}$

2. If
$$x = \tanh + \sinh \theta$$
 and $y = \tanh \theta$ કોંચ તો સાબિત કરો કે $x^2 - y^2 = 4\sqrt{xy}$
ર. જો $x = \tan \theta + \sin \theta$ અને $y = \tan \theta - \sin \theta$ હોંચ તો સાબિત કરો કે $x^2 - y^2 = 4\sqrt{xy}$

3. Prove that
$$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} - \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} = \frac{4\tan\theta}{\tan^2\theta - 1}$$

$$\frac{\cos\theta - \sin\theta}{\cos\theta - \sin\theta} - \frac{\cos\theta + \sin\theta}{\cos\theta + \sin\theta} = \frac{4\tan\theta}{\tan^2\theta - 1}$$

3. સાબિત કરો
$$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} - \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} = \frac{4\tan\theta}{\tan^2\theta - 1}$$

4. Find the adjoint of matrix
$$\begin{bmatrix} -4 & -3 & -3 \\ 1 & 0 & 1 \\ 4 & 4 & 3 \end{bmatrix}$$

3. Prove that
$$\frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} - \frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} = \frac{4\tan\theta}{\tan^2\theta - 1}$$
3.
$$\text{Higher Sol} \quad \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} - \frac{\cos\theta + \sin\theta}{\cos\theta + \sin\theta} = \frac{4\tan\theta}{\tan^2\theta - 1}$$
4. Find the adjoint of matrix
$$\begin{bmatrix} -4 & -3 & -3 \\ 4 & 4 & 3 \end{bmatrix}$$
8. Find the adjoint of matrix
$$\begin{bmatrix} -4 & -3 & -3 \\ 4 & 4 & 3 \end{bmatrix}$$
6. Attempt any two figural digital and with.

Attempt any two sisting of a solution and it.

1. If
$$sinA = \frac{1}{\sqrt{5}}$$
, $sinB = \frac{1}{\sqrt{10}}$, $0 < A, B < \frac{\pi}{2}$ then Prove that $A + B = \frac{\pi}{4}$.

1. If $sinA = \frac{1}{\sqrt{5}}$, $sinB = \frac{1}{\sqrt{10}}$, $0 < A, B < \frac{\pi}{2}$ then Prove that $A + B = \frac{\pi}{4}$.

9. જો
$$sinA = \frac{1}{\sqrt{5}}$$
, $sinB = \frac{1}{\sqrt{10}}$, $0 < A, B < \frac{\pi}{2}$ હોય તો સાબિત કરો $A + B = \frac{\pi}{4}$

2. Prove that
$$: \cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} = 0$$

2. Alleid
$$52$$
: $\cos 40^{\circ} + \cos 80^{\circ} + \cos 160^{\circ} = 0$

3. Prove that :
$$tan^{-1}\left(\frac{cosx}{1+sinx}\right) = \frac{1}{4}(\pi-2x)$$

3. સાબિત કરો :
$$tan^{-1}\left(\frac{cosx}{1+sinx}\right) = \frac{1}{4}(\pi - 2x)$$

3. Here
$$32$$
: $tan^{-1}\left(\frac{tosx}{1+sinx}\right) = \frac{1}{4}(\pi-2x)$
4. If $A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$ and I is a identity matrix of order 3 then evaluate $A^2 + 9I$

૪. જો
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2 \end{bmatrix}$$
 અને I એ 3 કક્ષા નો એકમ શ્રેબ્રિક હોય તો $A^2 + 9I$ શોધો

Q.5 (a) Attempt any two કોઇપણ બે ના જવાબ આપો.

06

- 1. If $x = 2\vec{j} 3\vec{i} + 7\vec{k}$, $y = -4\vec{i} \vec{k} + 5\vec{j}$ and $z = -3\vec{k} + \vec{j} 2\vec{i}$ then find the direction cosines of of resultant force. x, Y, Z are force.
- 9. જો $\mathbf{x} = 2\vec{j} 3\vec{i} + 7\vec{k}$, $y = -4\vec{i} \vec{k} + 5\vec{j}$ અને $z = -3\vec{k} + \vec{j} 2\vec{i}$ હોય તો પરિણામી બળ ના દિક કોસાઈનો શોધો.
- 2. If $\vec{a} = x\vec{j} + 2x\vec{i} 4\vec{k}$ and $\vec{b} = x\vec{i} 2\vec{j} + \vec{k}$ are perpendicular to each other then find the values of x
- ર. જો $\vec{a}=x\vec{j}+2x\vec{i}-4\vec{k}$ અને $\vec{b}=x\vec{i}-2\vec{j}+\vec{k}$ પરસ્પર લંબ હોય તો x ની કિમતો શોધો.
- 3. Simplify: $(3\vec{k} \vec{j}) * [(5\vec{i} \vec{k}) \times (4\vec{i} 7\vec{j})]$
- 3. સાદું રુપ આપો. : $(3\vec{k} \vec{j}) * [(5\vec{i} \vec{k}) \times (4\vec{i} 7\vec{j})]$
- 4. Find the angle between the vectors $x = \vec{j} 2\vec{i} + \vec{k}$, $y = 4\vec{k} 7\vec{j}$
- ૪. સદીશો $x = \vec{j} 2\vec{i} + \vec{k}$, $y = 4\vec{k} 7\vec{j}$ વચ્ચેની ખૂણી શોધો

Attempt any two કોઇપણ બે ના જવાબ આપો.

08

- (b)

 1 Given $A = \vec{i} + 2\vec{j} + 3\vec{k}$, $B = -\vec{i} + 2\vec{j} + \vec{k}$, $C = 10\vec{i} + 3\vec{j}$ then find scalar t such that A + tB is perpendicular to C
 - ૧ $A = \vec{\imath} + 2\vec{\jmath} + 3\vec{k}$, $B = -\vec{\imath} + 2\vec{\jmath} + \vec{k}$, $C = 10\vec{\imath} + 3\vec{\jmath}$ છે તો એવો આદિશ t શોધો કે જેથી A + tB એ Cને લંબ થાય
 - 2. The constant forces $9\vec{i} + 5\vec{k}$, $-\vec{i} 3\vec{k}$ and $2\vec{j} 5\vec{i}$ acting on a particle displace it from the point $5\vec{k} 4\vec{j}$ to the point $7\vec{k} 2\vec{i}$, then find the total work done.
 - ૨. અયળ બળો $9\vec{i} + 5\vec{k}$, $-\vec{i} 3\vec{k}$ અને $2\vec{j} 5\vec{i}$ કણ પર લાગતાં તેનું બિંદુ $5\vec{k} 4\vec{j}$ થી બિંદુ $7\vec{k}$

- 21 સુધી સ્થાનાંતર થાય છે.તો આ દરમ્યાન થયેલ કુલ કાર્ય શોધો.

- 3. If $x = -8\vec{j} + 3\vec{i}$ and $y = 5\vec{j} 4\vec{k}$ then find $|(x y) \times (x + y)|$
- 3. જો $x = -8\vec{j} + 3\vec{i}$ અને $y = 5\vec{j} 4\vec{k}$ હોય તો $|(x y) \times (x + y)|$ શોધો .
- 4. A force $F = \vec{i} \vec{k}$ passes through the the point A whose position vector is $2\vec{i} + \vec{j} + 5\vec{k}$. Find the moment of force about the point B whose position vector $3\vec{i} 3\vec{j} + 2\vec{k}$
- ૪. એક બળ $F = \vec{\imath} \vec{k}$ બિંદુ A માંથી પસાર થાય છે જેનો સ્થાન સિંદશ $2\vec{\imath} + \vec{\jmath} + 5\vec{k}$ છે. તો બિંદુ B જેનો સ્થાન સિંદશ $3\vec{\imath} - 3\vec{\jmath} + 2\vec{k}$ છે પ્રત્યે યાકમાત્રા શોધો.